
 The NSS HLA - Integration
Framework

Defense Modeling & Simulation Office
(703) 998-0660 Fax (703) 998-0667
hla@msis.dmso.mil
http://www.dmso.mil/

Integrated Training Program

Current as of 10 Apr 98

NSS HLA
Mod 1
10 Apr 98 2

HLA Compliance

• Adapting DoD simulations to HLA requires
- A plan on how to cleanly integrate RTI services while preserving

standalone maintenance and operation

- A strategy for managing message processing and simulated time

- Significant software modifications and lots of testing

• Characteristics of an ideal integration approach
- Automate sending/receiving updated attributes

- Simplify initialization and sending/receiving interaction events

- Coordinate federate’s event processing with global federation time

• Common framework would help tremendously
- Would support other DoD simulations requiring HLA compliance

- Would speed up integration process - smaller learning curve

- Would automate reliable and efficient book-keeping mechanisms

NSS HLA
Mod 1
10 Apr 98 3

Outline of Presentation

• Background
- The Naval Simulation System (NSS)

- The Joint Training Federation Prototype (JTFp)

• The NSS HLA-Integration Framework
- Establishing the Thread of Control

- Simplifying Object Declaration and Management

- Automating Attribute Updates

- Encapsulating Received Events into Objects

- Coordinating Time Management

NSS HLA
Mod 1
10 Apr 98 4

The Naval Simulation
System (NSS)

• Discrete-Event Simulation on HP Workstations
- Platform-level modeling fidelity

- Object-oriented (C++)

• Used by CNO N812, CINCPACFLT, and Metron analysts
- Analysis, Operations planning, Training, Acquisition

- HLA integration is not allowed to impact standalone usage of
NSS

• Software development environment
- 200,000 lines of C++ code distributed across more than 2,000

files

- Team of up to 10 software developers and 7 analysts

- Strict configuration control with nightly regression testing

NSS HLA
Mod 1
10 Apr 98 5

The Joint Training Federation
prototype (JTFp)

• Characteristics of JTFp
- Real-time and logical-time modes of operation

- Ownership management services exercised

- Theater missile defense & marine landing scenarios

- Integration in Huntsville, Alabama at AEgis Research

Name Model Organization Language Time Management

EAGLE Ground MITRE LISP Time step

NASM/AP Air Force CACI MODSIM II Process model

NSS Navy Metron C++ Discrete-event

DEEM Environment ANL SmallTalk Multiple time step

JTF-HQ Com. Ctrl. AEgis C++ Wall clock

NSS HLA
Mod 1
10 Apr 98 6

The NSS Four-Step
Integration Strategy

• Develop the Framework in standalone mode
- Establish that the framework supports RTI services

- Help debug the prototype RTI

• Integrate NSS with the Framework
- Federate NSS with NSS

- Verify NSS can communicate with the RTI through the
Framework

• Integrate the Framework with JTFp
- Coordinate initialization procedures and basic connectivity

- Verify message formats

• Integrate NSS and the Framework with JTFp
- Test and debug remotely

- Maintain strict configuration management of NSS

NSS HLA
Mod 1
10 Apr 98 7

Standalone and Federated
NSS

NSS

Framework

NSS++

JTFp

EAGLE++
DEEM++

JTF-HQ++

NASM/AP++

RTI

Standalone NSS Federated NSS

NSS HLA
Mod 1
10 Apr 98 8

Thread of Control

• Framework provides the main program
- Coordinates advancement of time

- Decides when it is safe for federate to process next
event

- Handles messages passed between federate and the RTI

- Manages book-keeping of object and attribute IDs

• Federate provides five subroutines
- void HLA_PubSub()

- void HLA_Instantiate()

- double HLA_ProcessUpTo(double time)

- double HLA_SimTime()

- void HLA_PostEvent(PostEventObject *PEO)

NSS HLA
Mod 1
10 Apr 98 9

Publishing
and Subscribing

• Framework provides
- Single line function calls for publishing and subscribing

- Flexible argument list that accommodates any number of
attributes

- String-based interface that hides the RTI’s data structure

- Automatic exception handling

- Automatic book-keeping of attribute and object IDs

• Federate provides
- Interaction name, object class name and its associated attributes

- Examples:
u HLARTI_publish(“Ship”, “Lat”, “Lon”, “Speed”, NULL);

u HLARTI_subscribe(“Aircraft”, “Lat”, “Lon”, “Alt”, “Speed”, NULL);

u HLARTI_publish_interaction(“AirToGroundEngage”);

u HLARTI_subscribe_interaction(“GroundToAirEngage”);

NSS HLA
Mod 1
10 Apr 98 10

Registering and Deleting
Objects

• Framework provides
- Unique object IDs for registered objects

- Single line function call for registering and deleting objects

- String-based interface

- Automatic exception handling

- Automatic book-keeping of attribute and object IDs

• Federate provides
- Object’s name, ID and deletion time

- Examples:

u UniqueID = HLARTI_instantiate(“Ship”);

u HLARTI_delete(UniqueID, time);

NSS HLA
Mod 1
10 Apr 98 11

Updating Attributes

• Framework provides
- Attribute Objects in C++ with operator overloading

- Automatic sending of attributes whenever they are updated

- Elimination of unnecessary update attribute messages

- Automatic unit conversions, data marshalling, name translation,
and exception handling, and book-keeping of attribute and
object IDs

- Federate provides

- Initialization information

- Example:

u DOUBLE_ATTRIBUTE Speed ; // Part of an entity’s state

u Speed.set_id(UniqueID); // The entity’s unique ID

u Speed.set_name(“Speed”); // The FOM name of the attribute

u Speed.set_knots2MPH(); // Automatic unit conversion

u Speed = 20.0; // Use as normal variable

NSS HLA
Mod 1
10 Apr 98 12

Sending Interactions

• Framework provides
- Single line function call for the send interaction service

- Variable length, string-based interface

- Common packaging of interaction parameters

- Automatic exception handling and book-keeping

• Federate provides
- Interaction related information

- Example:

InteractionID = HLARTI_send_interaction(

”AirToGroundEngage” , InitiatorID, ReceiverID, InteractionTime,

“launch_time”, “double”, LaunchTime,

“salvo_size”, “int”, 20,

etc... for other interaction parameters

NULL);

NSS HLA
Mod 1
10 Apr 98 13

Receiving an Event

• Framework provides the PostEventObject
- Encapsulation of all received event information for same

object at same time into a single event object

- String-based interfaces to unpack the PEOs

- Methods to automate the reflect attribute and remove objects
services and to automate attribute and object ID book-
keeping

- Standard mechanism to correctly pass received event
information to the federate

• Federate provides
- Its own native event processing and queue management code

- Examples:
u Discovering an object and reflecting its attributes

u Removing an object

u Receiving an interaction

NSS HLA
Mod 1
10 Apr 98 14

Receiving an Event
(Continued...)

• Example: discovering an object and reflect attributes
if (PEO->DISCOVER_OBJECT()) {

if (!strcmp(PEO->get_class_name(), “Aircraft”)) {

AIRCRAFT *Aircraft = new AIRCRAFT();

NewAircraft->id = PEO->get_id();

// Initialize the attribute objects for the aircraft with
their

// FOM names and unique Id

}

}

PEO->ReflectAttributes();

NSS HLA
Mod 1
10 Apr 98 15

Receiving an Event
(Continued...)

• Example: removing an object
if (PEO->REMOVE_OBJECT()) {

UniqueID = PEO->get_id();

// find the object (however it is stored) and delete
it

PEO->RemoveObject();

}

NSS HLA
Mod 1
10 Apr 98 16

Receiving an Event
(Continued...)

• Example: receiving an interaction
if (PEO->RECEIVE_INTERACTION()) {

int initiator = PEO->get_initiator();

int Receiver = PEO->get_receiver();

double InteractionTime = PEO->get_interaction_time();

if (!strcmp(PEO->get_class_name(), “AirToGroundEngage”)) {

double Tlaunch = PEO-
>get_double_parameter(“launch_time”);

int SalvoSize = PEO->get_int_parameter(“salvo_size”);

// etc... for other interaction parameters

}

}

NSS HLA
Mod 1
10 Apr 98 17

Time Management

• Framework provides
- Coordination of message processing and the advancement of

logical time through the the main processing loop

- Example: Framework’s main processing loop

SimTime = NextSimTime = RTItime = 0.0;

while (SimTime < EndTime) {

next_event_request(NextSimTime);

while (!TimeAdvanceGrantedFlag) {

 tick() // while RTI has tick it sends the framework messages

// messages packaged into PEOs and stored in RecEvtQ

}

while (PEO=RecEvtQ->RemoveItem()) HLA_PostEvent(PEO);

NextSimTime = HLA_ProcessUpTo(RTItime); SimTime = RTItime;

SendUpdatedAttributes();

}

NSS HLA
Mod 1
10 Apr 98 18

Summary

• Characteristics of the NSS HLA-Integration Framework
- Simplified interfaces that substitute for several key direct RTI

calls
- Automatic sending and receiving of updated attributes using

Attribute Objects
- Straight forward way to handle receiving various types of

messages using Post Event Objects
- A thread of control that also coordinates time management

• Advantages of the Framework middleware approach
- A plan on how to cleanly integrate RTI services while

preserving standalone maintenance and operation
- HLA integration with a modular object-oriented design that is

relatively quick to integrate, stable and easy to debug
- Reusable software or a software approach for other DoD

simulations needing to adapt to HLA

